A New Modified Approach to Rough Set Feature Selection
نویسندگان
چکیده
Extracting useful information from a huge data collection is an important and challenging issue. Feature selection (FS) refers to the problem of selecting minimal relevant features which produce the most predictive outcome and retaining the original meaning of the features after reduction. One of the successful techniques for feature selection from datasets is the rough set theory (RST). This paper starts with an outline of the fundamental concepts behind Rough set related to FS methods. Feature selection algorithms like Quickreduct (QR), Relative Reduct (RR), presented here. One new modified method based on Lower approximation base feature selection i.e. Improved Quickreduct algorithm is proposed which selects minimal subset of features and execution time is better than the original methods. This is performed using a stopping criterion with a threshold and with the concept of significance of features. A comparative study of the algorithms and the experiments are carried out on eight public domain datasets available in UCI machine learning repository to analyze the performance study.
منابع مشابه
Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملCombination of Feature Selection and Learning Methods for IoT Data Fusion
In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملAn efficient accelerator for attribute reduction from incomplete data in rough set framework
Feature selection (attribute reduction) from large-scale incomplete data is a challenging problem in areas such as pattern recognition, machine learning and data mining. In rough set theory, feature selection from incomplete data aims to retain the discriminatory power of original features. To address this issue, many feature selection algorithms have been proposed, however, these algorithms ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012